81 research outputs found

    Arctic Warming Signals from Satellite Observations

    Get PDF
    Global warming signals are expected to be amplified in the Arctic primarily because of ice-albedo feedback associated with the high reflectivity of ice and snow that blankets much of the region. The Arctic had been a poorly explored territory basically because of its general inaccessibility on account of extremely harsh weather conditions and the dominant presence of thick perennial ice in the region. The advent of satellite remote sensing systems since the 1960s, however, enabled the acquisition of synoptic data that depict in good spatial detail the temporal changes of many Arctic surface parameters. Among the surface parameters that have been studied using space based systems are surface temperature, sea ice concentration, snow cover, surface albedo and phytoplankton concentration. Associated atmospheric parameters, such as cloud cover, temperature profile, ozone concentration, and aerosol have also been derived. Recent observational and phenomenological studies have indeed revealed progressively changing conditions in the Arctic during the last few decades (e g , Walsh et al. 1996; Serreze et al 2000; Comiso and Parkinson 2004). The changes included declines in the extent and area of surfaces covered by sea ice and snow, increases in melt area over the Greenland ice sheets, thawing of the permafrost, warming in the troposphere, and retreat of the glaciers. These observations are consistent with the observed global warming that has been associated with the increasing concentration of greenhouse gases in the atmosphere (Karl and Trenberth 2003) and confirmed by modeling studies (Holland and Bitz, 2003). The Arctic system, however, is still not well understood complicated by a largely fluctuating wind circulation and atmospheric conditions (Proshutinsky and Johnson 1997) and controlled by what is now known as the Arctic Oscillation (AO) which provides a measure of the strength of atmospheric activities in the region (Thompson and Wallace 1998). Meanwhile, the observed Arctic conditions since the 1970s have been shown to exhibit a linear behavior that directly contradicts what has been expected from the A0 (Overland, 2005). The decade of the 1990s has been regarded as the warmest decade in the last century and current data indicates that the 2000s may be even a warmer decade than the 1990s further supporting the linear variability. In this paper, we use satellite data to gain insights into the warming Arctic and how the abnormally warm conditions during the last few years are reflected in the region

    Variability and Anomalous Trends in the Global Sea Ice Cover

    Get PDF
    The advent of satellite data came fortuitously at a time when the global sea ice cover has been changing rapidly and new techniques are needed to accurately assess the true state and characteristics of the global sea ice cover. The extent of the sea ice in the Northern Hemisphere has been declining by about -4% per decade for the period 1979 to 2011 but for the period from 1996 to 2010, the rate of decline became even more negative at -8% per decade, indicating an acceleration in the decline. More intriguing is the drastically declining perennial sea ice area, which is the ice that survives the summer melt and observed to be retreating at the rate of -14% per decade during the 1979 to 2012 period. Although a slight recovery occurred in the last three years from an abrupt decline in 2007, the perennial ice extent was almost as low as in 2007 in 2011. The multiyear ice, which is the thick component of the perennial ice and regarded as the mainstay of the Arctic sea ice cover is declining at an even higher rate of -19% per decade. The more rapid decline of the extent of this thicker ice type means that the volume of the ice is also declining making the survival of the Arctic ice in summer highly questionable. The slight recovery in 2008, 2009 and 2010 for the perennial ice in summer was likely associated with an apparent cycle in the time series with a period of about 8 years. Results of analysis of concurrent MODIS and AMSR-E data in summer also provide some evidence of more extensive summer melt and meltponding in 2007 and 2011 than in other years. Meanwhile, the Antarctic sea ice cover, as observed by the same set of satellite data, is showing an unexpected and counter intuitive increase of about 1 % per decade over the same period. Although a strong decline in ice extent is apparent in the Bellingshausen/ Amundsen Seas region, such decline is more than compensated by increases in the extent of the sea ice cover in the Ross Sea region. The results of analysis of MODIS, AMSR-E and SSM/I data reveal that the sea ice production rate at the coastal polynyas along the Ross Ice Shelf has been increasing since 1992. This also means that the salinization rate and the formation of bottom water in the region are going up as well. Simulation studies indicate that the stronger production rate is likely associated with the ozone hole that has caused a deepening of the lows in the West Antarctic region and therefore stronger winds off the Ross Ice Shelf. Stronger winds causes larger coastal polynyas near the shelf and hence an enhanced ice production in the region during the autumn and winter period. Results of analysis of temperature data from MODIS and AMSR-E shows that the area and concentration of the sea ice cover are highly correlated with surface temperature for both the Arctic and Antarctic, especially in the seasonal regions where the correlation coefficients are about 0.9. Abnormally high sea surface temperatures (SSTs) and surface ice temperatures (SITs) were also observed in 2007 and 2011when drastic reductions in the summer ice cover occurred, This phenomenon is consistent with the expected warming of the upper layer of the Arctic Ocean on account of ice-albedo feedback. Changes in atmospheric circulation are also expected to have a strong influence on the sea ice cover but the results of direct correlation analyses of the sea ice cover with the Northern and the Southern Annular Mode indices show relatively weak correlations, This might be due in part to the complexity of the dynamics of the system that can be further altered by some phenomena like the Antarctic Circumpolar Wave and extra polar processes like the El Nino Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (POD)

    Trends in Surface Temperature at High Latitudes

    Get PDF
    The earliest signal of a climate change is expected to be found in the polar regions where warming is expected to be amplified on account of ice-albedo feedbacks associated with the high reflectivity of snow and ice. Because of general inaccessibility, there is a general paucity of in situ data and hence the need to use satellite data to observe the large-scale variability and trends in surface temperature in the region. Among the most important sensors for monitoring surface temperature has been the Advanced Very High Resolution Radiometer (AVHRR) which was first launched in 1978 and has provided continuous thermal infrared data since 1981. The top of the atmosphere data are converted to surface temperature data through various schemes that accounts for the unique atmospheric and surface conditions in the polar regions. Among the highest source of error in the data is cloud masking which is made more difficult in the polar region because of similar Signatures of clouds and snow lice covered areas. The availability of many more channels in the Moderate Resolution Imaging Spectroradiometer (MODIS) launched on board Terra satellite in December 1999 and on board Aqua in May 2002 (e.g., 36 visible and infrared channels compared to 5 for AVHRR) made it possible to minimize the error. Further capabilities were introduced with the Advanced Microwave Scanning Radiometer (AMSR) which has the appropriate frequency channels for the retrieval of sea surface temperature (SST). The results of analysis of the data show an amplified warming in the Arctic region, compared with global warming. The spatial distribution of warming is, however, not uniform and during the last 3 decades, positive temperature anomalies have been most pronounced in North America, Greenland and the Arctic basin. Some regions of the Arctic such as Siberia and the Bering Sea surprisingly show moderate cooling but this may be because these regions were anomalously warm in the 1980s when the satellite record started. Also, the SST in the Arctic basin is observed to be anomalously high in 2007 when the perennial ice cover declined dramatically to its lowest extent. In the Antarctic, surface temperature trends are much more moderate with the most positive trends occurring in the Antarctic Peninsula and parts of Western Antarctica while some cooling are observed in the Antarctic Plateau and the Ross Sea. The trends in SST in the region is similar to global averages but precipitation from more evaporation may have a key role in the spatial distribution of surface temperature in the ice covered regio

    Satellite Observation Systems for Polar Climate Change Studies

    Get PDF
    The key observational tools for detecting large scale changes of various parameters in the polar regions have been satellite sensors. The sensors include passive and active satellite systems in the visible, infrared and microwave frequencies. The monitoring started with Tiros and Nimbus research satellites series in the 1970s but during the period, not much data was stored digitally because of limitations and cost of the needed storage systems. Continuous global data came about starting with the launch of ocean color, passive microwave, and thermal infrared sensors on board Nimbus-7 and Synthetic Aperture Radar, Radar Altimeter and Scatterometer on board SeaSat satellite both launched in 1978. The Nimbus-7 lasted longer than expected and provided about 9 years of useful data while SeaSat quit working after 3 months but provided very useful data that became the baseline for follow-up systems with similar capabilities. Over the years, many new sensors were launched, some from Japan Aeronautics and Space Agency (JAXA), some from the European Space Agency (ESA) and more recently, from RuSSia, China, Korea, Canada and India. For polar studies, among the most useful sensors has been the passive microwave sensor which provides day/night and almost all weather observation of the surface. The sensor provide sea surface temperature, precipitation, wind, water vapor and sea ice concentration data that have been very useful in monitoring the climate of the region. More than 30 years of such data are now available, starting with the Scanning Multichannel Microwave Radiometer (SMMR) on board the Nimbus-7, the Special Scanning Microwave/Imager (SSM/I) on board a Defense Meteorological Satellite Program (DMSP) and the Advanced Microwave Scanning Radiometer on board the EOS/ Aqua satellite. The techniques that have been developed to derive geophysical parameters from data provided by these and other sensors and associated instrumental and algorithm errors and validation techniques will be discussed. An important issue is the organization and storage of hundreds of terabytes of data collected by even just a few of these satellite sensors. Advances in mass storage and computer technology have made it possible to overcome many of the collection and archival problems and the availability of comprehensive satellite data sets put together by NASA's Earth Observing System project will be discussed

    Large Decadal Decline of the Arctic Multiyear Ice Cover

    Get PDF
    The perennial ice area was drastically reduced to 38% of its climatological average in 2007 but recovered somewhat in 2008, 2009 and 2010 with the areas being 10%, 24%, and 11% higher than in 2007, respectively. However, the trends in the extent and area remain strongly negative at -12.2% and -13.5 %/decade, respectively. The thick component of the perennial ice, called multiyear ice, as detected by satellite data in the winters of 1979 to 2011 was studied and results reveal that the multiyear ice extent and area are declining at an even more rapid rate of -15.1% and -17.2 % per decade, respectively, with record low value in 2008 followed by higher values in 2009, 2010 and 2011. Such high rate in the decline of the thick component of the Arctic ice cover means a reduction in average ice thickness and an even more vulnerable perennial ice cover. The decline of the multiyear ice area from 2007 to 2008 was not as strong as that of the perennial ice area from 2006 to 2007 suggesting a strong role of second year ice melt in the latter. The sea ice cover is shown to be strongly correlated with surface temperature which is increasing at about three times global average in the Arctic but appears weakly correlated with the AO which controls the dynamics of the region. An 8 to 9-year cycle is apparent in the multiyear ice record which could explain in part the slight recovery in the last three years

    Two Modes of Appearance of the Odden Ice Tongue in the Greenland Sea

    Get PDF
    The Odden Ice tongue of the Greenland Sea normally forms locally In winter as frazfl-pancake ice, allowing high positive salt fluxes during freezing that leads to open ocean convection. We report observations from satellites, aircraft, ships and submarines which show that in two recent years (1987 and 1996) a late-season Odden developed composed of old ice advected by the East Greenland Current. The Impact of such Odden is different in that it is in a state of melt and serves to stabilize the surface water in the region. The history of Oddens since 1978 is reviewed to examine the frequency of both modes

    Trends in the Sea Ice Cover Using Enhanced and Compatible AMSR-E, SSM/I and SMMR Data

    Get PDF
    Arguably, the most remarkable manifestation of change in the polar regions is the rapid decline (of about -10 %/decade) in the Arctic perennial ice cover. Changes in the global sea ice cover, however, are more modest, being slightly positive in the Southern Hemisphere and slightly negative in the Northern Hemisphere, the significance of which has not been adequately assessed because of unknown errors in the satellite historical data. We take advantage of the recent and more accurate AMSR-E data to evaluate the true seasonal and interannual variability of the sea ice cover, assess the accuracy of historical data, and determine the real trend. Consistently derived ice concentrations from AMSR-E, SSM/I, and SMMR data were analyzed and a slight bias is observed between AMSR-E and SSM/I data mainly because of differences in resolution. Analysis of the combine SMMR, SSM/I and AMSR-E data set, with the bias corrected, shows that the trends in extent and area of sea ice in the Arctic region is -3.4 +/- 0.2 and -4.0 +/- 0.2 % per decade, respectively, while the corresponding values for the Antarctic region is 0.9 +/- 0.2 and 1.7 .+/- 0.3 % per decade. The higher resolution of the AMSR-E provides an improved determination of the location of the ice edge while the SSM/I data show an ice edge about 6 to 12 km further away from the ice pack. Although the current record of AMSR-E is less than 5 years, the data can be utilized in combination with historical data for more accurate determination of the variability and trends in the ice cover

    Impacts of the Variability of Ice Types on the Decline of the Arctic Perennial Sea Ice Cover

    Get PDF
    The observed rapid decline in the Arctic perennial ice cover is one of the most remarkable signal of change in the Arctic region. Updated data now show an even higher rate of decline of 9.8% per decade than the previous report of 8.9% per decade mainly because of abnormally low values in the last 4 years. To gain insights into this decline, the variability of the second year ice, which is the relatively thin component of the perennial ice cover, and other ice types is studied. The perennial ice cover in the 1990s was observed to be highly variable which might have led to higher production of second year ice and may in part explain the observed ice thinning during the period and triggered further decline. The passive microwave signature of second year ice is also studied and results show that while the signature is different from that of the older multiyear ice, it is surprisingly more similar to that of first year ice. This in part explains why previous estimates of the area of multiyear ice during the winter period are considerably lower than the area of the perennial ice cover during the preceding summer. Four distinct clusters representing radiometrically different types have been identified using multi-channel cluster analysis of passive microwave data. Data from two of these clusters, postulated to come from second year and older multiyear ice regions are also shown to have average thicknesses of 2.4 and 4.1 m, respectively, indicating that the passive microwave data may contain some ice thickness information that can be utilized for mass balance studies. The yearly anomaly maps indicate high gains of first year ice cover in the Arctic during the last decade which means higher production of second year ice and fraction of this type in the declining perennial ice cover. While not the only cause, the rapid decline in the perennial ice cover is in part caused by the increasing fractional component of the thinner second year ice cover that is very vulnerable to total melt due to warming in the Arctic, especially in spring

    The Influence of Sea Ice on Primary Production in the Southern Ocean: A Satellite Perspective

    Get PDF
    Sea ice in the Southern Ocean is a major controlling factor on phytoplankton productivity and growth, but the relationship is modified by regional differences in atmospheric and oceanographic conditions. We used the phytoplankton biomass (binned at 7-day intervals), PAR and cloud cover data from SeaWiFS, ice concentrations data from SSM/I and AMSR-E, and sea-surface temperature data from AVHRR, in combination with a vertically integrated model to estimate primary productivity throughout the Southern Ocean (south of 60"s). We also selected six areas within the Southern Ocean and analyzed the variability of the primary productivity and trends through time, as well as the relationship of sea ice to productivity. We found substantial interannual variability in productivity from 1997 - 2005 in all regions of the Southern Ocean, and this variability appeared to be driven in large part by ice dynamics. The most productive regions of Antarctic waters were the continental shelves, which showed the earliest growth, the maximum biomass, and the greatest areal specific productivity. In contrast, no large, sustained blooms occurred in waters of greater depth (> 1,000 m). We suggest that this is due to the slightly greater mixed layer depths found in waters off the continental shelf, and that the interactive effects of iron and irradiance (that is, increased iron requirements in low irradiance environments) result in the limitation of phytoplankton biomass over large regions of the Southern Ocean

    Polar microwave brightness temperatures from Nimbus-7 SMMR: Time series of daily and monthly maps from 1978 to 1987

    Get PDF
    A time series of daily brightness temperature gridded maps (October 25, 1978 through August 15, 1987) were generated from all ten channels of the Nimbus-7 Scanning Multichannel Microwave Radiometer orbital data. This unique data set can be utilized in a wide range of applications including heat flux, ocean circulation, ice edge productivity, and climate studies. Two sets of data in polar stereographic format are created for the Arctic region: one with a grid size of about 30 km on a 293 by 293 array similar to that previously utilized for the Nimbus-5 Electrically Scanning Microwave Radiometer, while the other has a grid size of about 25 km on a 448 by 304 array identical to what is now being used for the DMSP Scanning Multichannel Microwave Imager. Data generated for the Antaractic region are mapped using the 293 by 293 grid only. The general technique for mapping, and a quality assessment of the data set are presented. Monthly and yearly averages are also generated from the daily data and sample geophysical ice images and products derived from the data are given. Contour plots of monthly ice concentrations derived from the data for October 1978 through August 1987 are presented to demonstrate spatial and temporal detail which this data set can offer, and to show potential research applications
    corecore